Cancers, Vol. 12, Pages 236: Does Direct and Indirect Exposure to Ionising Radiation Influence the Metastatic Potential of Breast Cancer Cells

Cancers, Vol. 12, Pages 236: Does Direct and Indirect Exposure to Ionising Radiation Influence the Metastatic Potential of Breast Cancer Cells Cancers doi: 10.3390/cancers12010236 Authors: Munira A. Kadhim Ammar Mayah Susan A. Brooks Ionising radiation (IR) is commonly used for cancer therapy; however, its potential influence on the metastatic ability of surviving cancer cells exposed directly or indirectly to IR remains controversial. Metastasis is a multistep process by which the cancer cells dissociate from the initial site, invade, travel through the blood stream or lymphatic system, and colonise distant sites. This complex process has been reported to require cancer cells to undergo epithelial-mesenchymal transition (EMT) by which the cancer cells convert from an adhesive, epithelial to motile, mesenchymal form and is also associated with changes in glycosylation of cell surface proteins, which may be functionally involved in metastasis. In this paper, we give an overview of metastatic mechanisms and of the fundamentals of cancer-associated glycosylation changes. While not attempting a comprehensive review of this wide and fast moving field, we highlight some of the accumulating evidence from in vitro and in vivo models for increased metastatic potential in cancer cells that survive IR, focusing on angiogenesis, cancer cell motility, invasion, and EMT and glycosylation. We also explore the indirect effects in cells exposed to exosomes released from irradiated...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Review Source Type: research

Related Links:

ConclusionsCollectively, these data reveal a pro-tumorigenic role of TNF- α during breast cancer progression and metastasis. We systemize the knowledge regarding TNF-α-related therapies in breast cancer, and we explain how TNF-α may act as both a target and a drug in different breast cancer therapeutic approaches. By corroborating the known molecular effects of TNF-α signaling in breast cancer cells with the results from several preclinical and clinical trials, including TNF-α-related clinical observations, we conclude that the potential of TNF-α in breast cancer therapy promises to be of great interest.
Source: Cellular Oncology - Category: Cancer & Oncology Source Type: research
This study was undertaken to investigate the antibone-metastatic activities and mechanisms of WSZG extract by evaluating the effect of this formula on the cross-talk between bone marrow-derived mesenchymal stem cells (BMSCs) and breast cancer cells in triggering epithelial-mesenchymal transition (EMT) in vivo and in vitro. The results demonstrated that BMSCs might enhance the invasive and metastatic potentials of breast cancer cells as a consequence of EMT induction through direct cell-to-cell contact. WSZG treatment remarkably suppressed motility, invasion, EMT-related gene, and protein markers in BMSC-conditioned breast ...
Source: Biomedicine and pharmacotherapy = Biomedecine and pharmacotherapie - Category: Drugs & Pharmacology Authors: Tags: Biomed Pharmacother Source Type: research
a Marwan El-Sabban Loss of connexin-mediated cell-cell communication is a hallmark of breast cancer progression. Pannexin1 (PANX1), a glycoprotein that shares structural and functional features with connexins and engages in cell communication with its environment, is highly expressed in breast cancer metastatic foci; however, PANX1 contribution to metastatic progression is still obscure. Here we report elevated expression of PANX1 in different breast cancer (BRCA) subtypes using RNA-seq data from The Cancer Genome Atlas (TCGA). The elevated PANX1 expression correlated with poorer outcomes in TCGA BRCA patients. In ad...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Article Source Type: research
This study was undertaken to investigate the antibone-metastatic activities and mechanisms of WSZG extract by evaluating the effect of this formula on the cross-talk between bone marrow-derived mesenchymal stem cells (BMSCs) and breast cancer cells in triggering epithelial-mesenchymal transition (EMT) in vivo and in vitro. The results demonstrated that BMSCs might enhance the invasive and metastatic potentials of breast cancer cells as a consequence of EMT induction through direct cell-to-cell contact. WSZG treatment remarkably suppressed motility, invasion, EMT-related gene, and protein markers in BMSC-conditioned breast ...
Source: Biomedicine and Pharmacotherapy - Category: Drugs & Pharmacology Source Type: research
In this study, the effects of the membrane potential of breast cancer cells (-30 mV) and normal breast epithelial cells (-60 mV) on doxorubicin (DOX) permeability was studied. To achieve this goal, black lipid membranes (BLMs) as a model cell membrane were formed with DPhPC phospholipids in a single aperture of a Teflon sheet by the Montal and Mueller method. The presence of the BLM was characterized by capacitive measurements. The measured specific capacitance of 0.6 µF/cm2 after applying the Montal and Mueller method, confirming the presence of a BLM in the aperture. In addition, the very low current leakage of the...
Source: European Journal of Pharmaceutics and Biopharmaceutics - Category: Drugs & Pharmacology Authors: Tags: Eur J Pharm Biopharm Source Type: research
This study created newly modified structures of HPMC and chitosan, altering their physicochemical properties that could then retard drug release. The nanoparticles were cytotoxic towards MDA-MB-231 breast cancer cells when docetaxel was loaded in the nanoparticles, particularly the nanoparticles produced in the second approach, demonstrating their ability to kill cancerous cells and their potential for further applications in cancer therapy. Additionally, when Caco-2 cells were used as an absorption model in a transport study, the nanoparticles in the second approach showed their capacity to increase drug permeability ac...
Source: Materials Science and Engineering: C - Category: Materials Science Source Type: research
Abstract Histone deacetylases (HDACs) can regulate cancer progression and its inhibitors (HDACIs) have been widely used for cancer therapy. Valproic acid (VPA, 2-propylpentanoic acid) can inhibit the class I HDAC and suppress the malignancy of solid cancers. Our present study revealed that 1 mM VPA, which has no effect on cell proliferation, can significantly increase the migration and induce epithelial to mesenchymal transition (EMT) like properties of breast cancer cells. Further, VPA increased the expression of EMT-transcription factors (EMT-TFs) Snail and Zeb1. Knockdown of Snail and Zeb1 can attenuate VPA i...
Source: European Journal of Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Eur J Pharmacol Source Type: research
. Roose Fluidity in cell fate or heterogeneity in cell identity is an interesting cell biological phenomenon, which at the same time poses a significant obstacle for cancer therapy. The mammary gland seems a relatively straightforward organ with stromal cells and basal- and luminal- epithelial cell types. In reality, the epithelial cell fates are much more complex and heterogeneous, which is the topic of this review. Part of the complexity comes from the dynamic nature of this organ: the primitive epithelial tree undergoes extensively remodeling and expansion during puberty, pregnancy, and lactation and, unlike most ot...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Review Source Type: research
Abstract Myoferlin, a protein of the ferlin family, has seven C2 domains and exhibits activity in some cells, including myoblasts and endothelial cells. Recently, myoferlin was identified as a promising target and biomarker in non-small-cell lung cancer, breast cancer, pancreatic adenocarcinoma, hepatocellular carcinoma, colon cancer, melanoma, oropharyngeal squamous cell carcinoma, head and neck squamous cell carcinoma, clear cell renal cell carcinoma and endometrioid carcinoma. This evidence indicated that myoferlin was involved in the proliferation, invasion and migration of tumour cells, the mechanism of which...
Source: J Cell Mol Med - Category: Molecular Biology Authors: Tags: J Cell Mol Med Source Type: research
Abstract Cancer cells overexpress several transcription factors and motor proteins, such as NFkB and kinesin, to accommodate their high energy demand as well as migratory needs via enhanced glycolysis. We hypothesize that high glucose drives cancer progression and cell aggressiveness by decreasing actin expression, increasing NFkB, and kinesin expressions, and by activating Epithelial Mesenchymal Transition (EMT). Using lowly metastatic MCF-7 and highly metastatic MDA-MB231 (MB231) breast cancer cells - highly incident cancer types - we establish how glucose metabolism regulates actin and the biochemical changes t...
Source: Nutrition and Cancer - Category: Cancer & Oncology Authors: Tags: Nutr Cancer Source Type: research
More News: Breast Cancer | Cancer | Cancer & Oncology | Cancer Therapy | Epithelial Cancer | Study