Proteogenomic analysis of the Clostridium difficile exoproteome reveals a correlation between phylogenetic distribution and virulence potential.

Proteogenomic analysis of the Clostridium difficile exoproteome reveals a correlation between phylogenetic distribution and virulence potential. Anaerobe. 2020 Jan 13;:102151 Authors: Quesada-Gómez C, Murillo T, Arce G, Badilla-Lobo A, Castro-Peña C, Molina J, López-Ureña D, González-Camacho S, Lomonte B, Chacón-Díaz C, Rodríguez C, Chaves-Olarte E Abstract C. difficile induces antibiotic-associated diarrhea due to the action of two secreted toxins, TcdA and TcdB. A considerable range of virulence among C. difficile strains has been widely reported. During a hospital outbreak, 46 isolates were collected that belonged to different genotypes. Of those, the majority corresponded to two virulent strains, the globally distributed Sequence Type 1 (ST1)_North American Pulsotype 1 (NAP1) and the endemic ST54_NAPCR1 genotypes, respectively. Whereas the virulence of the latter has been attributed to increased secretion of toxins and production of a highly cytotoxic TcdB, these characteristics do not explain the increased lethality of the former. We undertook a proteomic comparative approach of the isolates participating in the outbreak to look for proteins present in the exoproteome of the ST1_NAP1and ST54_NAPCR1 strains. We used a low virulent ST2_NAP4 strain isolated also in the outbreak as control. Dendrograms constructed using the exoproteomes of the strains were very similar to those created using genomic information, suggesting a...
Source: Anaerobe - Category: Microbiology Authors: Tags: Anaerobe Source Type: research