Recombinant OX40 attenuates neuronal apoptosis through OX40-OX40L/PI3K/AKT signaling pathway following subarachnoid hemorrhage in rats.

Recombinant OX40 attenuates neuronal apoptosis through OX40-OX40L/PI3K/AKT signaling pathway following subarachnoid hemorrhage in rats. Exp Neurol. 2020 Jan 10;:113179 Authors: Wu LY, Enkhjargal B, Xie ZY, Travis ZD, Sun CM, Zhou KR, Zhang TY, Zhu QQ, Hang CH, Zhang JH Abstract Subarachnoid hemorrhage (SAH) is the most devastating form of stroke. Reducing neuronal apoptosis is an important countermeasure against early brain injury (EBI) after SAH. Recent evidence indicates that OX40-OX40L coupling is critical for cell survival and proliferation. Current study was performed to detect the role of recombinant OX40 (ReOX40) against neuronal apoptosis after SAH. The endovascular perforation model of SAH was performed on Sprague-Dawley (SD) rats. ReOX40 was injected intracerebroventricularly (i.c.v) 1 h after SAH induction and the following methods were employed: neurological function evaluation, immunofluorescence staining, fluoro-Jade C staining, and western blot. To study the underlying precise molecular mechanism, small interfering ribonucleic acid (siRNA) for OX40L and a specific inhibitor of PI3K, LY294002, were injected i.c.v. into SAH + ReOX40 rats before induction of SAH. When compared with sham rats, the expression of OX40 and OX40L was seen to decrease in the brain at 24 h after SAH induction. Administration of ReOX40 (5 μg/kg) increased expression of the OX40L, reduced the neuronal apoptosis, and improved short and l...
Source: Experimental Neurology - Category: Neurology Authors: Tags: Exp Neurol Source Type: research