In vivo biocompatibility study of degradable homo- versus multiblock copolymers and their (micro)structure compared to an established biomaterial.

In vivo biocompatibility study of degradable homo- versus multiblock copolymers and their (micro)structure compared to an established biomaterial. Clin Hemorheol Microcirc. 2020 Jan 04;: Authors: Haase T, Klopfleisch R, Krost A, Sauter T, Kratz K, Peter J, Jung F, Lendlein A, Zohlnhöfer D, Rüder C Abstract Copolyetheresterurethane (PDC) is a biodegradable, shape-memory biomaterial, which has been shown to be of low toxicity and pro-angiogenic in vitro. In the present study we examined the in vivo compatibility of PDC as a compression molded film and as electrospun scaffolds and its well established constituent, the homopolymer poly(p-dioxanone) (PPDO), which were compared with the clinically used poly[(vinylidene fluoride)-co-hexafluoropropene] (PVDF) as reference material. The materials were implanted in the subcutaneous tissue of mice and the host responses were analyzed histologically 7 and 28 days after implantation.All materials induced a foreign body response (FRB) including the induction of foreign body giant cells and a peripheral fibrous capsule. PDC, PPDO and PVDF films showed no signs of degradation after 28 days. PDC films showed a significantly reduced associated macrophage layer and fibrous capsule on their surface. Few fragments of PDC and PPDO scaffolds were present at the implantation site, while PVDF scaffolds were still present in large amounts at day 28. Especially aligned electrospun PDC scaffold induced a sign...
Source: Clinical Hemorheology and Microcirculation - Category: Hematology Authors: Tags: Clin Hemorheol Microcirc Source Type: research