Cross-Situational Statistical Learning of New Words Despite Bilateral Hippocampal Damage and Severe Amnesia

Word learning requires learners to bind together arbitrarily-related phonological, visual, and conceptual information. Prior work suggests that this binding can be robustly achieved via incidental cross-situational statistical exposure to words and referents. When cross-situational statistical learning (CSSL) is tested in the laboratory, there is no information on any given trial to identify the referent of a novel word. However, by tracking which objects co-occur with each word across trials, learners may acquire mappings through statistical association. While CSSL behavior is well-characterized, its brain correlates are not. The arbitrary nature of CSSL mappings suggests hippocampal involvement, but the incremental, statistical nature of the learning raises the possibility of neocortical or procedural learning systems. Prior studies have shown that neurological patients with hippocampal pathology have word-learning impairments, but this has not been tested in a statistical learning paradigm. Here, we used a neuropsychological approach to test whether patients with bilateral hippocampal pathology (N = 3) could learn new words in a CSSL paradigm. In the task, patients and healthy comparison participants completed a CSSL word-learning task in which they acquired eight word/object mappings. During each trial of the CSSL task, participants saw two objects on a computer display, heard one novel word, and selected the most likely referent. Across trials, words were 100% likely to ...
Source: Frontiers in Human Neuroscience - Category: Neuroscience Source Type: research