Stathmin Regulates Spatiotemporal Variation in the Memory Loop in Single-Prolonged Stress Rats

AbstractPosttraumatic stress disorder (PTSD) is closely related to brain structures of the memory loop such as the hippocampus, amygdala, and medial prefrontal cortex (mPFC). The fear genestathmin plays an important role in regulating fear memory. However, whether the fear genestathmin is related to fear memory loop anomalies caused by PTSD is unclear. A single-prolonged stress (SPS) rat model of PTSD was constructed. Wistar rats were randomly divided into 5 groups: the control group, SPS 1-day group, SPS 4-day group, SPS 7-day group, and SPS 14-day group. Then, we measured the protein and mRNA expression of stathmin, p-stathmin (Ser16, Ser25, Ser38, and Ser63), β-tubulin, and MAP-1B in the hippocampus, amygdala, and mPFC in the 5 groups by immunohistochemistry, Western blotting, and qRT-PCR. The expression of the stathmin protein in the hippocampus, mPFC, and amygdala of the rat memory loop decreased gradually in the SPS 1-day group, the SPS 4-day group, and the SPS 7-day group, in which it was the lowest, and then increased. The trend of the expression of stathmin mRNA in the three areas of the memory loop was consistent with the trend of the expression of the stathmin protein. The trend of the protein expression of p-stathmin (Ser25 and Ser38) was opposite of that of stathmin; it reached a peak on the 7th day, and then decreased in the hippocampus. The protein expression of p-stathmin (Ser63) showed the same trend in the mPFC. The protein and mRNA expression of β-tubulin...
Source: Journal of Molecular Neuroscience - Category: Neuroscience Source Type: research