Elucidating the effect of static electric field on Amyloid Beta 1–42 supramolecular assembly

Publication date: Available online 12 January 2020Source: Journal of Molecular Graphics and ModellingAuthor(s): S. Muscat, F. Stojceski, A. DananiAbstractAmyloid-β (Aβ) aggregation is recognized to be a key toxic factor in the pathogenesis of Alzheimer disease, which is the most common progressive neurodegenerative disorder. In vitro experiments have elucidated that Aβ aggregation depends on several factors, such as pH, temperature and peptide concentration. Despite the research effort in this field, the fundamental mechanism responsible for the disease progression is still unclear. Recent research has proposed the application of electric fields as a non-invasive therapeutic option leading to the disruption of amyloid fibrils. In this regard, a molecular level understanding of the interactions governing the destabilization mechanism represents an important research advancement. Understanding the electric field effects on proteins, provides a more in-depth comprehension of the relationship between protein conformation and electrostatic dipole moment.The present study focuses on investigating the effect of static Electric Field (EF) on the conformational dynamics of Aβ fibrils by all-atom Molecular Dynamics (MD) simulations. The outcome of this work provides novel insight into this research field, demonstrating how the Aβ assembly may be destabilized by the applied EF.Graphical abstract
Source: Journal of Molecular Graphics and Modelling - Category: Molecular Biology Source Type: research