The Study of Generic Model Set for Reducing Calibration Time in P300-Based Brain–Computer Interface

P300-based brain-computer interfaces (BCIs) provide an additional communication channel for individuals with communication disabilities. In general, P300-based BCIs need to be trained, offline, for a considerable period of time, which causes users to become fatigued. This reduces the efficiency and performance of the system. In order to shorten calibration time and improve system performance, we introduce the concept of a generic model set. We used ERP data from 116 participants to train the generic model set. The resulting set consists of ten models, which are trained by weighted linear discriminant analysis (WLDA). Twelve new participants were then invited to test the validity of the generic model set. The results demonstrated that all new participants matched the best generic model. The resulting mean classification accuracy equaled 80% after online training, an accuracy that was broadly equivalent to the typical training model method. Moreover, the calibration time was shortened by 70.7% of the calibration time of the typical model method. In other words, the best matching model method only took 81s to calibrate, while the typical model method took 276s. There were also significant differences in both accuracy and raw bit rate between the best and the worst matching model methods. We conclude that the strategy of combining the generic models with online training is easily accepted and achieves higher levels of user satisfaction (as measured by subjective rep...
Source: IEE Transactions on Neural Systems and Rehabilitation Engineering - Category: Neuroscience Source Type: research