Blocking the defect sites on ultrathin Pt nanowires with Rh atoms to optimize the reaction path toward alcohol fuel oxidation

Publication date: Available online 5 January 2020Source: Chinese Chemical LettersAuthor(s): Xiaoyu Zhao, Huachao Zhao, Jiefang Sun, Gang Li, Rui LiuAbstractAnodic electrocatalyst plays the core role in direct alcohol fuel cells (DAFCs), while traditional Pt-catalysts suffer from limited catalytic activity, high over potential and severe CO poisoning. Herein, by selectively depositing Rh atoms on the defective-sites of Pt nanowires (NWs), we developed a new Pt@Rh NW electrocatalyst that exhibited enhanced electrocatalytic performance for both methanol oxidation (MOR) and ethanol oxidation (EOR). Both cyclic voltammetry (CV) and in-situ infrared spectroscopy revealed that the presence of Rh atoms suppressed the generation of poisonous intermediates and completely oxidized alcohols molecule into CO2. Atomic resolusion spherical aberration corrected high-angle annular dark field scanning transmission electron microscopy (CS-HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDS) mapping analysis revealed that Rh atoms were primarily deposited on the defective sites of Pt NWs. Meanwhile, the presence of Rh atoms also modified the electronic state of Pt atoms and therefore lowered the onset potential for alcohols oxidation potential. This work gives the first clear clue on the role of the defective sites of Pt nanocatalyst poisoning, and propose that selectively blocking these sites with trace amount of Rh is an effective strategy in designing advantageous electrocatalysts.Graph...
Source: Chinese Chemical Letters - Category: Chemistry Source Type: research