Modeling motor task activation from resting-state fMRI using machine learning in individual subjects

In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications.
Source: Brain Imaging and Behavior - Category: Neurology Source Type: research