Dendritic Cells Loaded with Heat Shock-Conditioned Ovarian Epithelial Carcinoma Cell Lysates Elicit T Cell-Dependent Antitumor Immune Responses In Vitro.

Dendritic Cells Loaded with Heat Shock-Conditioned Ovarian Epithelial Carcinoma Cell Lysates Elicit T Cell-Dependent Antitumor Immune Responses In Vitro. J Immunol Res. 2019;2019:9631515 Authors: Flores I, Hevia D, Tittarelli A, Soto D, Rojas-Sepúlveda D, Pereda C, Tempio F, Fuentes C, Falcón-Beas C, Gatica J, Falcón-Beas F, Galindo M, Salazar-Onfray F, González FE, López MN Abstract Ovarian epithelial carcinoma (OEC) is the most frequent ovarian tumor, characterized by a high mortality in advanced stages where conventional therapies are not effective. Based on the role of the immune system in the progression of this disease, immunotherapy using checkpoint blockade has been considered as a therapeutic alternative. Nevertheless, its results do not match up to the positive results in entities like melanoma and other malignancies, suggesting the need to find other therapies to be used alone or in combination. Dendritic cell- (DC-) based vaccines have shown promising results in several types of cancer, such as melanoma, prostate, and lung cancers, due to the essential role played by DCs in the activation of specific T cells, thus using other ways of activating the immune response than immune checkpoint blockade. During the last decade, we have used DC-based vaccines loaded with an allogeneic heat shock-conditioned melanoma cell lysate in the treatment of advanced stage patients in a series of clinical trials. In these studie...
Source: Journal of Immunology Research - Category: Allergy & Immunology Tags: J Immunol Res Source Type: research

Related Links:

Michal Yalon1†, Amos Toren1,2†, Dina Jabarin2, Edna Fadida3, Shlomi Constantini3 and Ruty Mehrian-Shai1* 1Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel 2The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel 3Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv-Sourasky Medical Center, Tel Aviv, Israel Pediatric brain tumors are the most common solid tumor type and the leading cause of cancer-related death in children. The immune system plays an important r...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
In this study, we evaluated the therapeutic benefit of combining the TAB004 antibody with Liposomal-MSA-IL-2 in immune competent and human MUC1 transgenic (MUC1.Tg) mouse models of PDA and investigated the associated immune responses. Treatment with TAB004 + Lip-MSA-IL-2 resulted in significantly improved survival and slower tumor growth compared to controls in MUC1.Tg mice bearing an orthotopic PDA.MUC1 tumor. Similarly, in the spontaneous model of PDA that expresses human MUC1, the combination treatment stalled the progression of pancreatic intraepithelial pre-neoplastic (PanIN) lesion to adenocarcinoma. Treatment with t...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Conclusions This review describes how leukocyte-heparanase can be a double-edged sword in tumor progression; it can enhance tumor immune surveillance and tumor cell clearance, but also promote tumor survival and growth. We also discuss the potential of using heparanase in leukocyte therapies against tumors, and the effects of heparanase inhibitors on tumor progression and immunity. We are just beginning to understand the influence of heparanase on a pro/anti-tumor immune response, and there are still many questions to answer. How do the pro/anti-tumorigenic effects of heparanase differ across different cancer types? Does...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Conclusion Several TISC-based immunotherapeutic approaches are under development in various stages of preclinical studies. As outlined in this review article, a careful and more exhaustive genetic and metabolic understanding of TISC-associated phenotypes is critical to develop novel TISC based immunotherapies. Various components within the tumor microenvironment such as tumor cells, infiltrating immune cells, and supporting stromal cells impact the TISC metabolism. This unique metabolic profile leads to upregulation of certain enzymes and proteins such as ALDH1, CEP55, IDO COA1 etc., which can be utilized for development ...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Reena Goswami1, Gayatri Subramanian2, Liliya Silayeva1, Isabelle Newkirk1, Deborah Doctor1, Karan Chawla2, Saurabh Chattopadhyay2, Dhyan Chandra3, Nageswararao Chilukuri1 and Venkaiah Betapudi1,4* 1Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States 2Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States 3Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States 4Department of Physiology and Biophysics, Case Western Reserve University, Clev...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Conclusions MDSC are major players in the immunosuppressive scenario in cancer, thanks to their phenotype heterogeneity and critical interaction with several innate immune cells, thus representing a crucial target in oncology. Here we reviewed the interactions of MDSCs with NK cells. The contribution of key cytokines, chemokines and mediators active in this process have been discussed. We also described the contribution of MDSC on angiogenesis directly or indirectly through interactions with NK and immunosuppressive activities. A parallel of the cancer associated to the decidual counterpart of these cells is discussed, a...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Conclusions and Perspectives In this review, we have discussed important milestones from the early description of “Serum-sickness” as being due to antibodies directed against Neu5Gc epitopes all the way to the present-day therapeutic implications of these antibodies in cancer therapy. Some of these milestones have been represented in a concise timeline (Figure 6). While the “Xenosialitis” hypothesis is well-supported in the human-like mouse models, it has yet to be conclusively proven in humans. It remains to be seen if “Xenosialitis” plays a role in other uniquely-human diseases. FI...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Markus Hartl* and Rainer Schneider Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria The neuronal proteins GAP43 (neuromodulin), MARCKS, and BASP1 are highly expressed in the growth cones of nerve cells where they are involved in signal transmission and cytoskeleton organization. Although their primary structures are unrelated, these signaling proteins share several structural properties like fatty acid modification, and the presence of cationic effector domains. GAP43, MARCKS, and BASP1 bind to cell membrane phospholipids, a process reversibly regulate...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Personalized Dendritic Cell Vaccines—Recent Breakthroughs and Encouraging Clinical Results Beatris Mastelic-Gavillet, Klara Balint, Caroline Boudousquie, Philippe O. Gannon and Lana E. Kandalaft* Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland With the advent of combined immunotherapies, personalized dendritic cell (DC)-based vaccination could integrate the current standard of care for the treatment of a large variety of tumors. Due to their proficiency at antigen presentation, DC are key coordinators of the innate...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Conclusions: CAR T cell therapies have demonstrated the clinical benefits of harnessing our body's own defenses to combat tumor cells. Similar research is being conducted on lesser known modifications and gene-modified immune cells, which we highlight in this review. Introduction Chimeric antigen receptors and engineered T cell receptors (based on previously identified high affinity T cell receptors) function by redirecting T cells to a predefined tumor-specific (or tumor-associated) target. Most of these modifications use retroviral or lentiviral vectors to integrate the construct, and most of the receptors ...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
More News: Allergy & Immunology | Cancer | Cancer & Oncology | Cancer Vaccines | Carcinoma | Clinical Trials | Epithelial Cancer | Immunotherapy | Melanoma | Ovarian Cancer | Ovaries | Skin Cancer | Study | Vaccines