Structure-dependent retention of steroid hormones by common laboratory materials

Publication date: Available online 26 December 2019Source: The Journal of Steroid Biochemistry and Molecular BiologyAuthor(s): Jeffrey M. McManus, Nima SharifiAbstractThe tendency of steroid molecules to adsorb to various materials, particularly plastics, has been known of for decades but has not received widespread attention in the scientific community, and a modern, systematic study is lacking. This adsorption is an important consideration for researchers working with steroid hormones as it could skew the results of various experiments. Here we show that steroids adsorb to various vessels used in experiments, including microcentrifuge tubes, glass vials, and cell culture plates, in a manner that depends on the steroid’s molecular structure and on the type of vessel. The lipophilicity of steroids is a strong predictor of the degree of adsorption, with nearly 50% of the most lipophilic steroid tested, pregnenolone, retained in a high-adsorbing microcentrifuge tube after one hour incubation of an aqueous pregnenolone solution followed by removal of the aqueous solvent. We also show the effects of other factors such as incubation time, centrifugation, and temperature on adsorption, and show that adsorption can be mostly prevented by the presence of serum proteins in steroid solutions and/or by the use of low-adsorbing tubes.
Source: The Journal of Steroid Biochemistry and Molecular Biology - Category: Biochemistry Source Type: research