Gamma-linolenic acid inhibits hepatic PAI-1 expression by inhibiting p38 MAPK-dependent activator protein and mitochondria-mediated apoptosis pathway

Abstract Fibrosis is induced by the excessive and abnormal deposition of extracellular matrix (ECM) with various growth factors in tissues. Transforming growth factor beta 1 (TGF-β1), plays a role in inducing apoptosis, modulates fibrosis, and ECM accumulation. Plasminogen activator inhibitor 1 (PAI-1) plays an important role in the development hepatic fibrosis. The overexpression of PAI-1 induces ECM accumulation, the main hallmark of chronic liver diseases. Death of hepatocytes is a characteristic feature of chronic liver disease due to various causes. The TGF-β1-mediated apoptotic pathway is regarded as a promising therapeutic target in hepatic fibrosis. Gamma-linolenic acid (GLA) is of special interest as it possesses anti-fibrosis, anti-inflammatory, and anti-cancer properties. However, the precise mechanism for GLA in chronic liver disease is not still clear. The aim of the present study was to determine whether GLA prevents hepatic PAI-1 expression and apoptosis through the inhibition of TGF-β1-mediated molecular mediators. GLA attenuated TGF-β1-stimulated PAI-1 expression, and inhibited PAI-1 promoter activity in AML12 cells. This effect was mediated by Smad3/4, the p38 pathways. We also found that GLA suppressed TGF-β1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase 1 cleavage. GLA ameliorates the pro-fibrotic and pro-apoptotic effects of TGF-β1 in ...
Source: Apoptosis - Category: Molecular Biology Source Type: research