Betanin Attenuates Oxidative Stress Induced by 6-OHDA in PC12 Cells via SAPK/JNK and PI3 K Pathways.

Betanin Attenuates Oxidative Stress Induced by 6-OHDA in PC12 Cells via SAPK/JNK and PI3 K Pathways. Neurochem Res. 2019 Dec 19;: Authors: Hadipour E, Fereidoni M, Tayarani-Najaran Z Abstract Parkinson's disease is a neurodegenerative disorder which accompanied with cognitive decline, chorei form moves and behavioral difficulties. Oxidative stress which promote the apoptotic cell death are responsible for neurodegeneration in Parkinson. The purpose of this study is to evaluate the protective effects of betanin against toxicity and oxidative damage induced by 6-hydroxydopamine (6-OHDA) and hydrogen peroxide (H2O2) in PC12 cells as an appropriate model of Parkinson's cell damage. PC12 cells pretreated with betanin (1-200 µM) for 24 h, and exposed to either 6-OHDA (100 µM) or H2O2 (150 µM) for 24 h. Cell survival and intracellular reactive oxygen species (ROS) production analyzed by resazurin and DCF-DA assay. The anti-apoptotic effects of betanin in PC12 cells were studied using flow cytometry of PI stained cells. Also, western blot analysis of survivin, Cyt c, Phospho SAPK/JNK, SAPK/JNK, Phospho-PI3 kinase P85, PI3 kinase P85 was performed for detection of apoptosis. Betanin (1-200 µM) significantly decreased the 6-OHDA and H2O2 cytotoxicity also attenuated the ROS level. Cell apoptosis significantly increased after 6-OHDA (100 µM) treatment, compared to the control. However, pretreatment with betanin (20 and 50 µM), protected a...
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research