Biogenic Synthesis of Silver Nanoparticles: Antibacterial and Cytotoxic Potential

Publication date: Available online 19 December 2019Source: Saudi Journal of Biological SciencesAuthor(s): Asma S. Algebaly, Afrah E. Mohammed, Nael Abutaha, Mudawi M. ElobeidAbstractIn green chemistry, the application of a biogenic material as a mediator in nanoparticle formation is an innovative nanotechnology. Our current investigation aimed at testing the cytotoxic potential and antimicrobial ability of silver nanoparticles (AgNPs) that were prepared using Calligonum comosum roots and Azadirachta indica leaf extracts as stabilizing and reducing agents. An agar well diffusion technique was employed to detect synthesized AgNPs antibacterial ability on Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus bacterial strains. Furthermore, their cytotoxic capability against LoVo, MDA-MB231 and HepG2 ca cells was investigated. For phyto-chemical detection in the biogenic AgNPs the Fourier-transform infrared spectroscopy (FT-IR) was considered. Zeta sizer, TEM (Transmission electron microscope) and FE-SEM (Field Emission Scanning Electron Microscope) were used to detect biogenic AgNPs’ size and morphology. The current results showed the capability of tested plant extract for conversion of Ag ions to AgNPs with a mean size ranging between 90.8 ± 0.8 and 183.2 ± 0.7 nm in diameter. Furthermore, prepared AgNPs exhibited apoptotic potential against HepG2, LoVo, and MDA-MB 231cell with IC50 ranging between 10.9 - 21.4 μg/ml and antibacterial ability in the range of 1...
Source: Saudi Journal of Biological Sciences - Category: Biology Source Type: research