β3 adrenergic receptor blockade reduces mortality in endotoxin-induced heart failure by suppressing induced nitric oxide synthase and saving cardiac metabolism.

In this study, we investigated the role of β3AR in sepsis-related myocardial dysfunction using lipopolysaccharide (LPS)-induced endotoxemia as a model of cardiac dysfunction. We placed mice into three treatment groups and treated each with intraperitoneal injections of the β3AR agonist CL316243 (CL group), the β3AR antagonist SR59230A (SR group), or normal saline (NS group). Survival rates were significantly improved in the SR group compared with the other treatment groups. Echocardiography analyses revealed cardiac dysfunction within 6-12 h of LPS injections, but the outcome was significantly better for the SR group. Myocardial adenosine triphosphate (ATP) was preserved in the SR group but was decreased in the CL-treated mice. Additionally, quantitative PCR analysis revealed that expression levels of genes associated with fatty acid oxidation and glucose metabolism were significantly higher in the SR group. Furthermore, the expression levels of mitochondrial membrane protein complexes were preserved in the SR group. Electron microscope studies showed significant accumulation of lipid droplets in the CL group. Moreover, inducible nitric oxide synthase (iNOS) protein expression and nitric oxide were significantly reduced in the SR group. The in vitro study demonstrated that β3AR has an independent iNOS pathway that does not go through the nuclear factor-kappa B (NFκB) pathway. These results suggest that blockading β3AR improves impaired energy metabolism in myocardial ti...
Source: American Journal of Physiology. Heart and Circulatory Physiology - Category: Physiology Authors: Tags: Am J Physiol Heart Circ Physiol Source Type: research