Variation in Early Life Stress Contributes to Differences in Lifespan in Genetically Identical Worms

Why do genetically identical nematode worms raised in the same environment exhibit a distribution in life span? Researchers here suggest that differences in oxidative stress in early life are an important contributing factor, perhaps steering metabolism in some of these simple organisms towards greater resistance to the rising oxidative stress of aging. So a form of hormetic effect, perhaps. Does this have much relevance to higher animals such as our own, however? It would be challenging to separate out early life effects of this nature from the environmental differences across the whole of life, given the existing human epidemiological data. We might consider lines of research into childhood exposure to persistent viruses such as cytomegalovirus, which hint at an earlier burden of infection leading to a shorter and less healthy later life. Or evidence for greater exposure to solar radiation in utero, via seasonal variation, to produce differences in long-term human health and life expectancy. These are not hormetic effects, but ones in which the burden of increased damage reduces health and longevity. Perhaps hormetic effects do exist, but they would certainly be harder to find in the human data. Oxidative stress happens when cells produce more oxidants and free radicals than they can deal with. It's part of the aging process, but can also arise from stressful conditions such as exercise and calorie restriction. Examining a type of roundworm called C. elegans...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs