Inhibition of a novel coumarin on an aquatic rhabdovirus by targeting the early stage of viral infection demonstrates potential application in aquaculture

In this study, we designed and synthesized a novel coumarin derivative (C3007) for evaluating its in vitro and in vivo anti-SVCV effects. Here, we determined that up to 25 mg/L C3007 significantly decreased SVCV protein gene expression levels in EPC cells by a maximum inhibitory rate of>95%. When C3007 was preincubated with SVCV, infectivity was significantly inhibited in vitro in a time-dependent manner, with complete inhibition at 25 mg/L. For in vivo studies, C3007 exhibited an anti-SVCV effect by substantially enhancing the survival rate of virus-infected fish via intraperitoneal injection. Although the horizontal transmission of SVCV was hindered by C3007 in a static cohabitation challenge model, it was not completely blocked, showing that the viral loads in recipient fish were obviously reduced. Thus, C3007 could potentially be used as a therapeutic agent with great potential in aquatic systems and may also be suitable for applications in pond aquaculture settings against viral transmission. Additionally, the C3007-preincubated virus induced an antiviral immune response with high levels of IFN expression, suggesting that C3007 pre-treatment could be used in vaccine development.
Source: Antiviral Therapy - Category: Virology Source Type: research