The modulation study of multiple drug resistance in bladder cancer by curcumin and resveratrol.

The modulation study of multiple drug resistance in bladder cancer by curcumin and resveratrol. Oncol Lett. 2019 Dec;18(6):6869-6876 Authors: Cho CJ, Yang CW, Wu CL, Ho JY, Yu CP, Wu ST, Yu DS Abstract Gemcitabine (GCB), which functions via the inhibition of DNA synthesis, is commonly used in the treatment of bladder cancer; however, its response rate is not satisfactory due to the development of drug resistance. The potential for phytochemicals to reverse drug resistance in bladder cancer tumor cells was evaluated. A human bladder cancer cell line, T24, was cultured, and GCB-resistant cells (T24-GCB) were also established. The acquired resistance of T24-GCB to GCB was measured using an MTT assay. The gene expression of ATP-binding cassette (ABC) transporter protein family members was analyzed using reverse transcription-quantitative PCR analysis, and western blotting was performed to verify ABC family protein, cytoplasmic thymidine kinase (TK) and poly (ADP-ribose) polymerase (PARP) expression on whole cell lysates. Subsequently, resveratrol and curcumin were used to evaluate their modulation potential in decreasing the drug resistance of T24-GCB cells to GCB using MTT and migration assays. T24-GCB cells have increased drug resistance ability, with an 18.75-fold higher ID50 value compared with native T24 cells (105 vs. 5.6 nM). T24-GCB cells also exhibit increased cross resistance to mitomycin C and paclitaxel. The mRNA expression o...
Source: Oncology Letters - Category: Cancer & Oncology Tags: Oncol Lett Source Type: research