Analyzing cellular immunogenicity in vaccine clinical trials: a new statistical method including non-specific responses for accurate estimation of vaccine effect.

We describe here a new statistical approach to analyze ICS data from vaccine trials. We propose a bivariate linear regression model for estimating the non-specific and antigen-specific ICS responses. We benchmarked the performance of the model in terms of both bias and control of type-I and -II errors in comparison with conventional approaches, and applied it to simulated data as well as real pre- and post-vaccination data from two recent HIV vaccine trials (ANRS VRI01 in healthy volunteers and therapeutic VRI02 ANRS 149 LIGHT in HIV-infected participants). The model was as good as the conventional approaches (with or without subtraction of the non-specific response) in all simulation scenarios in terms of statistical performance, whereas the conventional approaches did not provide robust results across all scenarios. The proposed model estimated the T-cell responses to the antigens without any effect of the non-specific response on the specific response, irrespective of the correlation between the non-specific and specific responses. This novel method of analyzing T-cell immunogenicity data based on bivariate modeling is more flexible than conventional methods, and so yields more detailed results and enables accurate interpretation of vaccine-induced response. PMID: 31809708 [PubMed - as supplied by publisher]
Source: Journal of Immunological Methods - Category: Allergy & Immunology Authors: Tags: J Immunol Methods Source Type: research