Telmisartan inhibits oxalate and calcium oxalate crystal-induced epithelial-mesenchymal transformation via PPAR-γ-AKT/STAT3/p38 MAPK-Snail pathway

Publication date: Available online 28 November 2019Source: Life SciencesAuthor(s): Yadong Liu, Song Chen, Jiannan Liu, Yinshan Jin, Shiliang Yu, Ruihua AnAbstractAimsTelmisartan (TLM), a highly selective angiotensin II type 1 receptor blocker (ARB) and partial PPAR-γ agonist, has versatile beneficial effects against oxidative stress, apoptosis, inflammatory responses and epithelial-mesenchymal transition (EMT). However, its underlying mechanism of inhibiting oxalate and calcium oxalate (CaOx) crystal-induced EMT by activating the PPAR-γ pathway remains unclear.Main methodsCCK-8 assays were used to evaluate the effects of TLM on cell viability. In addition, intracellular reactive oxygen species (ROS) levels were measured by the cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Wound-healing and Transwell assays were used to evaluate the migration ability of HK2 cells exposed to oxalate. Moreover, immunofluorescence, immunohistochemistry and western blotting were used to examine the expression of E-cadherin, N-cadherin, vimentin and α-SMA and explore the underlying molecular mechanisms in HK2 cells and a stone-forming rat model.Key findingsOur results showed that TLM treatment could protect HK2 cells from oxalate-induced cytotoxicity and oxidative stress injury. Additionally, TLM prevented EMT induction by oxalate and CaOx crystals via the PPAR-γ-AKT/STAT3/p38 MAPK-Snail pathway in vitro and in vivo. However, knockdown of PPAR-γ with small inter...
Source: Life Sciences - Category: Biology Source Type: research