Reviewing the DNA Damage Response in Aging

Nuclear DNA damage is considered a contributing cause of aging, though at this stage the research community is still proposing and debating processes by which this damage might cause metabolic dysfunction throughout the body. Mutations to nuclear DNA evidently increase cancer risk, but setting this aside, how does random damage to random cells contribute to the declines of age? There are a few possibilities; firstly that the vast majority of nuclear DNA damage, occurring as it does in somatic cells, or in unusued portions of the genome, is irrelevant. Harms are done when mutations affecting function occur in stem cells and progenitor cells, allowing that mutation to spread widely throughout a tissue. The second possibility, more recently proposed, is that all nuclear DNA damage systemically affects cell function wherever it occurs in the genome, because the processes of DNA repair have the side-effect of causing epigenetic changes characteristic of aging. Thirdly, higher levels of mutational damage may generate a greater burden of cellular senescence. Relative effect sizes of these processes are an open question, and much more work must be done to confirm that they are relevant in each case. One important aspect of the ageing process is the accumulation of DNA damage through time. While containing the entire genetic information (except for mitochondria-encoded genes), the nuclear genome is constantly threatened by genotoxic insults, with an estimated frequency...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs

Related Links:

In this study, we investigated the link between AF and senescence markers through the assessment of protein expression in the tissue lysates of human appendages from patients in AF, including paroxysmal (PAF) or permanent AF (PmAF), and in sinus rhythm (SR). The major findings of the study indicated that the progression of AF is strongly related to the human atrial senescence burden as determined by p53 and p16 expression. The stepwise increase of senescence (p53, p16), prothrombotic (TF), and proremodeling (MMP-9) markers observed in the right atrial appendages of patients in SR, PAF, and PmAF points toward multiple inter...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Purpose: Tumor markers that are related to hypoxia, proliferation, DNA damage repair and stem cell-ness, have a prognostic value in advanced stage HNSCC patients when assessed individually. Here we aimed to evaluate and validate this in a multifactorial context and assess interrelation and the combined role of these biological factors in determining chemo-radiotherapy response in HPV-negative advanced HNSCC.Methods: RNA sequencing data of pre-treatment biopsy material from 197 HPV-negative advanced stage HNSCC patients treated with definitive chemoradiotherapy was analyzed. Biological parameter scores were assigned to pati...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
A rising level of TGF-β has long been associated with numerous aspects of aging. More modern research has shown it to encourage cells to become senescent. Further, TGF-β is an important component of the inflammatory mix of signals secreted by senescent cells, making it a part of the mechanism by which senescent cells can encourage their neighbors to also become senescent. When senescent cells fail to clear quickly, as happens in older individuals, this leads to a feedback loop of continually rising chronic inflammation and ever greater numbers of senescent cells. This is an important contribution to degenerative ...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs
Conclusion A great deal of progress is being made in the matter of treating aging: in advocacy, in funding, in the research and development. It can never be enough, and it can never be fast enough, given the enormous cost in suffering and lost lives. The longevity industry is really only just getting started in the grand scheme of things: it looks vast to those of us who followed the slow, halting progress in aging research that was the state of things a decade or two ago. But it is still tiny compared to the rest of the medical industry, and it remains the case that there is a great deal of work yet to be done at all...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Mutational damage to nuclear DNA occurs constantly in all cells, and not all of it is successfully repaired. Setting aside recent evidence for cycles of damage and repair to cause epigenetic changes characteristic of aging, most unrepaired mutational damage has no meaningful consequence. It occurs in somatic cells that have few cell divisions left, so will not spread, and these cells will die or become senescent and be destroyed once they reach the Hayflick limit. It occurs in genes that are not active in the tissue in question, so even in long-lived somatic cells that do not replicate, such as those of the central nervous...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs
Conclusion: The tetraazamacrocyclic small molecule 64Cu-CuCB-bicyclam has been shown to be an imaging agent for the CXCR4 receptor that is likely to be applicable across a range of species. It has high affinity and stability and is suitable for preclinical research in immunocompetent murine models.
Source: Journal of Nuclear Medicine - Category: Nuclear Medicine Authors: Tags: Basic Source Type: research
Conclusion A great deal of progress is being made in the matter of treating aging: in advocacy, in funding, in the research and development. It can never be enough, and it can never be fast enough, given the enormous cost in suffering and lost lives. The longevity industry is really only just getting started in the grand scheme of things: it looks vast to those of us who followed the slow, halting progress in aging research that was the state of things a decade or two ago. But it is still tiny compared to the rest of the medical industry, and it remains the case that there is a great deal of work yet to be done at all...
Source: Fight Aging! - Category: Research Authors: Tags: Of Interest Source Type: blogs
This study presents the effects of berberine (BBR) on the aging process resulting in a promising extension of lifespan in model organisms. BBR extended the replicative lifespan, improved the morphology, and boosted rejuvenation markers of replicative senescence in human fetal lung diploid fibroblasts. BBR also rescued senescent cells with late population doubling (PD). Furthermore, the senescence-associated β-galactosidase (SA-β-gal)-positive cell rates of late PD cells grown in the BBR-containing medium were ~72% lower than those of control cells, and its morphology resembled that of young cells. Mechanistically...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Abstract Stem cells are the foundation of all mammalian life. Stem cells build and maintain our bodies throughout life. Two types of stem cells are discerned.1) Embryonic stem cells (ES cells) are briefly present in the early human or mouse embryo, a few days after fertilization. These ES cells can be grown indefinitely in the lab and have the potential to build each and every tissue in our body. Because of this 'pluripotency', ES cells hold great promise for therapeutic application in the field of regenerative medicine. It is also possible to take skin cells (or other cells) from adults and convert these in the l...
Source: The Keio Journal of Medicine - Category: Universities & Medical Training Authors: Tags: Keio J Med Source Type: research
Transposable elements make up a sizable portions of the genome, capable of copying themselves to other locations in the genome under the right circumstances. This activity is suppressed in youth, but increases in older individuals for reasons that are still being explored. Transposable element activity is thought to contribute to aging in a similar way to the effects of mutational damage to DNA, setting aside the risk of cancer, meaning a growing disarray in cellular metabolism due to altered genes and gene expression. When this occurs in stem cells or progenitor cells, this disarray might propagate to a sizable fraction o...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs
More News: Cancer | Cancer & Oncology | Chemistry | Gastroschisis Repair | Genetics | Mitochondria | Research | Stem Cell Therapy | Stem Cells