Quantum counterpart of measure synchronization: A study on a pair of Harper systems

Publication date: Available online 28 November 2019Source: Physics Letters AAuthor(s): Saikat Sur, Anupam GhoshAbstractMeasure synchronization is a well-known phenomenon in coupled classical Hamiltonian systems over last two decades. Here, synchronization in a pair of coupled Harper systems is investigated both in classical and quantum contexts. It seems that the concept of measure synchronization is restricted in the classical limit as it involves with the phase space. We show the quantum counterpart of the synchronization in a pair of coupled quantum kicked Harper chains. In the quantum context, the coupling occurs between two spins chains via a time and site dependent potential. We use the average interaction energy between the participating systems as an order parameter in both the contexts to establish a connection between the classical and the quantum scenarios. Besides, we also study the entanglement between the chains and difference between the average bare energies in the quantum context. Interestingly, all such indicators suggest a connection between the MS transition in classical maps and a phase transition in quantum spin chains.
Source: Physics Letters A - Category: Physics Source Type: research
More News: Physics | Study