Molecular characterization of PgUFGT gene and R2R3-PgMYB transcription factor involved in flavonoid biosynthesis in four tissues of wild pomegranate (Punica granatum L.).

Molecular characterization of PgUFGT gene and R2R3-PgMYB transcription factor involved in flavonoid biosynthesis in four tissues of wild pomegranate (Punica granatum L.). J Genet. 2019 Nov;98: Authors: Kaur R, Kapoor N, Aslam L, Mahajan R Abstract The diversity on fruit colouration in plants directly depends on the flavonoids that explain the development of different pigmentation patterns. Anthocyanins are the major class of flavonoid pigments that are synthesized through flavonoid biosynthetic pathway. In the present study, two genes: PgUFGT gene and R2R3-PgMYB gene, involved in anthocyanin biosynthesis were analysed in four tissues of wild pomegranate. The structural genes, UDP-glucose: flavonoid-3-O-glucosyl transferase (PgUFGT; GenBank accession number: MK058491) and its myeloblastosis transcription factor (R2R3-PgMYB; GenBank accession number: MK092063) were isolated and their expression pattern were studied. Molecular modelling indicated that the main secondary structures of PgUFGT and R2R3-PgMYB genes are α-helix and random coil. In addition, expression profiling of PgUFGT and R2R3-PgMYB by quantitative-real time PCR indicated a positive correlation between anthocyanin content and their expression in leaves, flowers, green and red fruits of wild pomegranate. Among all the tissues, the red fruit exhibited high transcripts levels of PgUFGT as well as R2R3-PgMYB transcription factor. An extensive homology with UFGTs from other p...
Source: Journal of Genetics - Category: Genetics & Stem Cells Authors: Tags: J Genet Source Type: research