Endothelial cell dysfunction during anoxia-reoxygenation is associated with a decrease in adenosine triphosphate levels, rearrangement in lipid bilayer phosphatidylserine asymmetry, and an increase in endothelial cell permeability

BACKGROUND Phosphatidylserine (PS) is normally confined in an energy-dependent manner to the inner leaflet of the lipid cell membrane. During cellular stress, PS is exteriorized to the outer layer, initiating a cascade of events. Because cellular stress is often accompanied by decreased energy levels and because maintaining PS asymmetry is an energy-dependent process, it would make sense that cellular stress associated with decreased energy levels is also associated with PS exteriorization that ultimately leads to endothelial cell dysfunction. Our hypothesis was that anoxia-reoxygenation (A-R) is associated with decreased adenosine triphosphate (ATP) levels, increased PS exteriorization on endothelial cell membranes, and increased endothelial cell membrane permeability. METHODS The effect on ATP levels during A-R was measured via colorimetric assay in cultured cells. To measure the effect of A-R on PS levels, cultured cells underwent A-R and exteriorized PS levels and also total cell PS were measured via biofluorescence assay. Finally, we measured endothelial cell monolayer permeability to albumin after A-R. RESULTS The ATP levels in cell culture decreased 27% from baseline after A-R (p
Source: The Journal of Trauma: Injury, Infection, and Critical Care - Category: Orthopaedics Tags: AAST 2018 PODIUM PAPERS Source Type: research
More News: Orthopaedics