Assessment of absorbed dose of gamma rays using the simultaneous determination of inactive hemoglobin derivatives as a biological dosimeter.

Assessment of absorbed dose of gamma rays using the simultaneous determination of inactive hemoglobin derivatives as a biological dosimeter. Radiat Environ Biophys. 2019 Nov 16;: Authors: Attia AMM, Aboulthana WM, Hassan GM, Aboelezz E Abstract Biological dosimetry based on sulfhemoglobin (SHb), methemoglobin (MetHb), and carboxyhemoglobin (HbCO) levels was evaluated. SHb, MetHb and HbCO levels were estimated in erythrocytes of mice irradiated by γ rays from a 60Co source using the method of multi-component spectrophotometric analysis developed recently. In this method, absorption measurements of diluted aqueous Hb-solution were made at λ = 500, 569, 577 and 620 nm, and using the mathematical formulas based on multi-component spectrophotometric analysis and the mathematical Gaussian elimination method for matrix calculation, the concentrations of various Hb-derivatives and total Hb in mice blood were estimated. The dose range of γ rays was from 0.5 to 8 Gy and the dose rate was 0.5 Gy min-1. Among all Hb-derivatives, MetHb, SHb and HbCO demonstrated an unambiguous dose-dependent response. For SHb and MetHb, the detection limits were about 0.5 Gy and 1 Gy, respectively. After irradiation, high levels of MetHb, SHb and HbCO persisted for at least 10 days, and the maximal increase of MetHb, SHb and HbCO occurred up to 24 h following γ irradiation. The use of this "MetHb + SHb + HbCO"-derivatives-based absorbed do...
Source: Radiation and Environmental Biophysics - Category: Physics Authors: Tags: Radiat Environ Biophys Source Type: research