Effect of temperature on the rupture behavior of highly stretchable acrylic elastomer

Publication date: Available online 16 November 2019Source: Polymer TestingAuthor(s): Jingtian Kang, Zeyi Zhang, Jian Li, Changguo WangAbstractDielectric elastomer has been recently explored extensively to make diverse soft actuators and energy harvesting devices. The lack of study on the rupture behavior under the influence of temperature hinders further applications where heat generation and accumulation are unavoidable. In this paper, an experimental study has been carried out to investigate the effect of temperature on the rupture behavior of acrylic dielectric elastomer. By using VHB 4910 films with and without an initial crack, the fracture energy at different temperature and stretch rate is measured by pure shear test. The storage modulus and phase angle have been investigated by dynamic mechanical analysis (DMA). The images of defects and rupture surface are provided by scanning electron microscope (SEM). It is found that the stretch at rupture is insensitive to the temperature for both pristine and precut samples. In addition, the maximum nominal stress and fracture energy linearly decrease with environmental temperature, especially at high stretch rate. Furthermore, we measure the stretch at rupture for rectangular strips with a single edge-notch under uniaxial tension and compare them with the theoretical prediction using nonlinear fracture mechanics based on the measured fracture energy. The results obtained in this paper will give a reference to the engineering de...
Source: Polymer Testing - Category: Chemistry Source Type: research