MnCeOx/diatomite catalyst for persulfate activation to degrade organic pollutants

In this study, a novel diatomite supported MnCeOx composite (MnCeOx/diatomite) was prepared and characterized for activation of PS to degrade organic pollutants. Results indicated that diatomite not only dispersed MnCeOx and increased the specific surface area of catalyst, but also improved the low-valence metal site (Mn2+ and Ce3+) and reactive oxygen species site (–OH) of MnCeOx, thus enhancing the activities of MnCeOx. MnCeOx/diatomite/PS showed high efficiency for multiple dyes and pharmaceutical pollutants. Constant rate (k) of MnCeOx/diatomite (kMnCeOx/diatomite) was three times higher than the sum of constant rate of MnCeOx (kMnCeOx) and constant rate of diatomite (kdiatomite). In addition, MnCeOx/diatomite showed wide pH application (5–9). Cl− and NO32− had no effect while SO42− and humid acid had slightly negative effects on MnCeOx/diatomite/PS system. Moreover, MnCeOx/diatomite showed good reusability and stability. Mechanism analyses indicated that electron transfer of Mn and Ce attributed to the activation of PS and oxygen to produce free radicals. SO4−, OH and O2− on the surface of catalyst were the main active free radicals to attack pollutants.Graphical abstract
Source: Journal of Environmental Sciences - Category: Environmental Health Source Type: research