Gravitational wave denoising of binary black hole mergers with deep learning

Publication date: Available online 6 November 2019Source: Physics Letters BAuthor(s): Wei Wei, E.A. HuertaAbstractGravitational wave detection requires an in-depth understanding of the physical properties of gravitational wave signals, and the noise from which they are extracted. Understanding the statistical properties of noise is a complex endeavor, particularly in realistic detection scenarios. In this article we demonstrate that deep learning can handle the non-Gaussian and non-stationary nature of gravitational wave data, and showcase its application to denoise the gravitational wave signals generated by the binary black hole mergers GW150914, GW170104, GW170608 and GW170814 from advanced LIGO noise. To exhibit the accuracy of this methodology, we compute the overlap between the time-series signals produced by our denoising algorithm, and the numerical relativity templates that are expected to describe these gravitational wave sources, finding overlaps O≳0.99. We also show that our deep learning algorithm is capable of removing noise anomalies from numerical relativity signals that we inject in real advanced LIGO data. We discuss the implications of these results for the characterization of gravitational wave signals.
Source: Physics Letters B - Category: Physics Source Type: research