Evaluating motor cortical oscillations and age-related change in autism spectrum disorder

In this study we used magnetoencephalography (MEG) to (1) assess potential group differences between typically developing (TD) and ASD participants in motor cortical oscillatory activity observed on a simple button-press task and (2) to do so over a sufficiently broad age-range so as to capture age-dependent changes associated with development. Event-related desynchronization was evaluated in Mu (8–13 Hz) and Beta (15–30 Hz) frequency bands (Mu-ERD, Beta-ERD). In addition, post-movement Beta rebound (PMBR), and movement-related gamma (60–90 Hz) synchrony (MRGS) were also assessed in a cohort of 123 participants (63 typically developing (TD) and 59 with ASD) ranging in age from 8 to 24.9 years.We observed significant age-dependent linear trends in Beta-ERD and MRGS power with age for both TD and ASD groups; which did not differ significantly between groups. However, for PMBR, in addition to a significant effect of age, we also observed a significant reduction in PMBR power in the ASD group (p < 0.05). Post-hoc tests showed that this omnibus group difference was driven by the older cohort of children>13.2 years (p < 0.001) and this group difference was not observed when assessing PMBR activity for the younger PMBR groups (ages 8–13.2 years; p = 0.48). Moreover, for the older ASD cohort, hierarchical regression showed a significant relationship between PMBR activity and clinical scores of ASD severity (SRS-T scores), after regressing out the eff...
Source: NeuroImage - Category: Neuroscience Source Type: research