A mechanistic approach of chromium (VI) adsorption onto manganese oxides and boehmite

In this study, birnessite (δ-MnO2), pyrolusite (β-MnO2), hausmannite (Mn3O4), manganite (γ-MnOOH), boehmite (γ-AlOOH), and Mn-Al binary oxide was used as adsorbents to adsorb Cr(VI) over a range of solution pH and initial Cr(VI) concentrations. A combined approach using the Langmuir and Freundlich models, proton stoichiometry and surface complexation model (SCM) have been used to describe the probable Cr(VI) adsorption process. Birnessite was the most potent adsorbent at low pH. The Langmuir model could describe the equilibrium isotherm data well, suggesting a uniform surface nature. Proton stoichiometry indicated that Cr(VI) adsorption involved more than one type of reaction. The findings confirm that Cr(VI) species bind to functional groups by the inner- and outer-sphere chromate complexes, with the extent of binding dependent on solution pH. The study presented herein can be applied to soils with a variety of surface properties, pH, and Cr (VI) concentrations. The study further advances our understanding of the interaction between Cr(VI) and minerals at the solid-water interface.Graphical Abstract
Source: Journal of Environmental Chemical Engineering - Category: Chemistry Source Type: research