House dust mite induces Sonic hedgehog signaling that mediates epithelial ‑mesenchymal transition in human bronchial epithelial cells.

House dust mite induces Sonic hedgehog signaling that mediates epithelial‑mesenchymal transition in human bronchial epithelial cells. Mol Med Rep. 2019 Sep 26;: Authors: Zou Y, Song W, Zhou L, Mao Y, Hong W Abstract Epithelial‑mesenchymal transition (EMT) provides a valuable source of fibroblasts that produce extracellular matrix in airway walls. The Sonic hedgehog (SHH) signaling pathway plays an essential role in regulating tissue turnover and homeostasis. SHH is strikingly upregulated in the bronchial epithelia during asthma. Snail1 is a major target of SHH signaling, which regulates EMT and fibroblast motility. The present study was designed to ascertain whether the combination of house dust mite (HDM) and transforming growth factor β1 (TGF‑β1) could induce EMT via the SHH signaling pathway in human bronchial epithelial cells (HBECs). HBEC cultures were treated with HDM/TGF‑β1 for different periods of time. The involvement of SHH signaling and EMT biomarkers was evaluated by quantitative real‑time PCR, western blotting and immunofluorescence staining. Small‑interfering RNA (siRNA) for glioma‑associated antigen‑1 (Gli1) or cyclopamine was used to inhibit SHH signaling in HBECs. HBECs stimulated by HDM/TGF‑β1 exhibited morphological features of EMT. E‑cadherin (an epithelial marker) was decreased after a 72‑h exposure to HDM/TGF‑β1 compared to that in the control cells, and the expression of type I col...
Source: Molecular Medicine Reports - Category: Molecular Biology Tags: Mol Med Rep Source Type: research