The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region

AbstractRagweed Pollen Alarm System (R-PAS) has been running since 2014 to provide pollen information for countries in the Pannonian biogeographical region (PBR). The aim of this study was to develop forecast models of the representative aerobiological monitoring stations, identified by analysis based on a neural network computation. Monitoring stations with 7-day Hirst-type pollen trap having 10-year long validated data set of ragweed pollen were selected for the study from the PBR. Variables including forecasted meteorological data, pollen data of the previous days and nearby monitoring stations were used as input of the model. We used the multilayer perceptron model to forecast the pollen concentration. The multilayer perceptron (MLP) is a feedforward artificial neural network. MLP is a data-driven method to forecast the behaviour of complex systems. In our case, it has three layers, one of which is hidden. MLP utilizes a supervised learning technique called backpropagation for training to get better performance. By testing the neural network, we selected different sets of variables to predict pollen levels for the next 3  days in each of the monitoring stations. The predicted pollen level categories (low–medium–high–very high) are shown on isarithmic map. We used the mean square error, mean absolute error and correlation coefficient metrics to show the forecasting system’s performance. The average of the Pe arson correlations is around 0.6 but shows big variabili...
Source: Aerobiologia - Category: Environmental Health Source Type: research