Evolution of infectious bronchitis virus in the field after homologous vaccination introduction

AbstractDespite the fact that vaccine resistance has been typically considered a rare phenomenon, some episodes of vaccine failure have been reported with increasing frequency in intensively-raised livestock. Infectious bronchitis virus (IBV) is a widespread avian coronavirus, whose control relies mainly on extensive vaccine administration. Unfortunately, the continuous emergence of new vaccine-immunity escaping variants prompts the development of new vaccines. In the present work, a molecular epidemiology study was performed to evaluate the potential role of homologous vaccination in driving IBV evolution. This was undertaken by assessing IBV viral RNA sequences from the ORF encoding the S1 portion of viral surface glycoprotein (S) before and after the introduction of a new live vaccine on broiler farms in northern-Italy. The results of several biostatistics analyses consistently demonstrate the presence of a higher pressure in the post-vaccination period. Natural selection was detected essentially on sites located on the protein surface, within or nearby domains involved in viral attachment or related functions. This evidence strongly supports the action of vaccine-induced immunity in conditioning viral evolution, potentially leading to the emergence of new vaccine-escape variants. The great plasticity of rapidly-evolving RNA-viruses in response to human intervention, which extends beyond the poultry industry, is demonstrated, claiming further attention due to their relevan...
Source: Veterinary Research - Category: Veterinary Research Source Type: research