An ultrasensitive biosensor for colorimetric detection of Salmonella in large-volume sample using magnetic grid separation and platinum loaded zeolitic imidazolate Framework-8 nanocatalysts

In this study, we reported a colorimetric biosensor for ultrasensitive detection of Salmonella Typhimurium using a magnetic grid separation column to efficiently separate target bacteria from large volume of sample and platinum loaded zeolitic imidazolate framework-8 (Pt@ZIF-8) nanocatalysts to effectively amplify biological signal. The target Salmonella cells in large volume of sample were first separated and concentrated using the magnetic grid separation column with immune magnetic particle chains, then conjugated with the immune Pt@ZIF-8 nanocatalysts to mimic peroxidase for catalysis of hydrogen peroxide-3,3′,5,5′-tetramethylbenzidine, and finally determined by measuring the catalysate at characteristic wavelength of 450 nm. This proposed biosensor was able to separate ∼70% of target Salmonella cells from 50 mL of bacterial sample and quantitatively detect Salmonella from 100 to 104 CFU/mL in 2.5 h with the lower detection limit of 11 CFU/mL. The mean recovery for Salmonella in spiked chicken carcass was about 109.8%. This new magnetic grid separation method was first time reported for efficient separation of target bacteria from very large volume of sample to greatly improve the sensitivity of this biosensor and could be used with various biosensing assays for practical applications in routine detection of foodborne pathogens without any bacterial pre-enrichment.
Source: Biosensors and Bioelectronics - Category: Biotechnology Source Type: research