Esophageal 3D organoids of MPV17-/- mouse model of mitochondrial DNA depletion show epithelial cell plasticity and telomere attrition.

Esophageal 3D organoids of MPV17-/- mouse model of mitochondrial DNA depletion show epithelial cell plasticity and telomere attrition. Oncotarget. 2019 Oct 22;10(58):6245-6259 Authors: Guha M, Srinivasan S, Sheehan MM, Kijima T, Ruthel G, Whelan K, Tanaka K, Klein-Szanto A, Chandramouleeswaran PM, Nakagawa H, Avadhani NG Abstract Esophageal squamous cell carcinoma (ESCC) is an aggressive cancer with late-stage detection and poor prognosis. This emphasizes the need to identify new markers for early diagnosis and treatment. Altered mitochondrial genome (mtDNA) content in primary tumors correlates with poor patient prognosis. Here we used three-dimensional (3D) organoids of esophageal epithelial cells (EECs) from the MPV17-/- mouse model of mtDNA depletion to investigate the contribution of reduced mtDNA content in ESCC oncogenicity. To test if mtDNA defects are a contributing factor in ESCC, we used oncogenic stimuli such as ESCC carcinogen 4-nitroquinoline oxide (4-NQO) treatment, or expressing p53R175H oncogenic driver mutation. We observed that EECs and 3D-organoids with mtDNA depletion had cellular, morphological and genetic alterations typical of an oncogenic transition. Furthermore, mitochondrial dysfunction induced cellular transformation is accompanied by elevated mitochondrial fission protein, DRP1 and pharmacologic inhibition of mitochondrial fission by mDivi-1 in the MPV17-/- organoids reversed the phenotype to that of norma...
Source: Oncotarget - Category: Cancer & Oncology Tags: Oncotarget Source Type: research