Comparison and Characterization of Mutations Induced by Gamma-Ray and Carbon-Ion Irradiation in Rice (Oryza sativa L.) Using Whole-Genome Resequencing

In this study, we characterized mutations induced by gamma rays and carbon(C)-ion beams in rice (Oryza sativa L.) mutant lines at M5 generation using whole-genome resequencing. On average, 57.0 single base substitutions (SBS), 17.7 deletions, and 5.9 insertions were detected in each gamma-ray-irradiated mutant, whereas 43.7 single SBS, 13.6 deletions, and 5.3 insertions were detected in each C-ion-irradiated mutant. The structural variation (SV) analysis detected 2.0 SVs (including large deletions or insertions, inversions, duplications, and reciprocal translocations) on average in each C-ion-irradiated mutant, while 0.6 SVs were detected on average in each gamma-ray-irradiated mutant. Furthermore, complex SVs presumably having at least two double-strand breaks (DSBs) were detected only in C-ion-irradiated mutants. In summary, gamma-ray irradiation tended to induce larger numbers of small mutations than C-ion irradiation, whereas complex SVs were considered to be the specific characteristics of the mutations induced by C-ion irradiation, which may be due to their different radiation properties. These results could contribute to the application of radiation mutagenesis to plant mutation breeding.
Source: G3: Genes Genomes Genetics - Category: Genetics & Stem Cells Authors: Tags: Investigations Source Type: research
More News: Genetics | Study