Antitumor activity of organoruthenium complexes with chelate aromatic ligands, derived from 1,10-phenantroline: Synthesis and biological activity.

Antitumor activity of organoruthenium complexes with chelate aromatic ligands, derived from 1,10-phenantroline: Synthesis and biological activity. J Inorg Biochem. 2019 Oct 20;202:110869 Authors: Savić A, Gligorijević N, Aranđelović S, Dojčinović B, Kaczmarek AM, Radulović S, Van Deun R, Van Hecke K Abstract The monocationic chloro complexes containing chelating N∩N ligands: [(η6-p-cymene)Ru(L1-4)Cl]+ (1-4), where L1 = 4-methyl-1,10-phenantroline, L2 = dipyrido[3,2-a:2',3'-c]phenazine, L3 = 11-chloro-dipyrido[3,2-a:2',3'-c]phenazine, L4 = 11-nitro-dipyrido[3,2-a:2',3'-c]phenazine; p-cymene = 1-methyl-4-isopropylbenzene) have been prepared and characterized as the hexafluorophosphate salts. The biological activity of 1-4 has been investigated in selected 2D monolayer cell cultures (A549, PANC-1, MDA-MB-231, MRC-5). All investigated ruthenium complexes showed similar or even better cytotoxicity to cisplatin. However, there was no significant reduction in growth of PANC-1 cells in a 3D cell culture of multicellular tumor spheroids (MCTS) after treatment with 2-4, while the cisplatin treatment induced retardation in MCTS growth. Flow cytometry analysis of the cell cycle of PANC-1 cells shows that 3 caused changes of cell cycle phase distribution characterized by slight accumulation of cells in the G2-M phase. Absence of the Sub-G1 phase in the cell cycle of the treated cells indicated that there was no fragm...
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Tags: J Inorg Biochem Source Type: research
More News: Biochemistry