The Yersinia high-pathogenicity island (HPI) carried by a new integrative and conjugative element (ICE) in a multidrug-resistant and hypervirulent Klebsiella pneumoniae strain SCsl1

Publication date: Available online 31 October 2019Source: Veterinary MicrobiologyAuthor(s): Dan Liu, Yongqiang Yang, Ju Gu, Hongmei Tuo, Ping Li, Xianjun Xie, Guang-xu Ma, Jinxin Liu, Anyun ZhangAbstractMultidrug-resistant and hypervirulent Klebsiella pneumoniae (hvKP) poses a significant risk to public health. To better understand the molecular characteristics of multidrug-resistant and hypervirulent K. pneumoniae of animal origin, fifteen K. pneumoniae strains from the liver, blood of sick pigs and chicken feces were collected. All K. pneumoniae isolates were subjected to antimicrobial susceptibility testing, string test, multi-locus sequence typing and whole genome sequencing. Seven K. pneumoniae isolates were found carrying the mcr-1.1 gene. Among them, a multidrug-resistant and hypervirulent K. pneumoniae strain SCsl1 isolated from the liver of a diseased pig was found to harbor 16 resistance genes (e.g., mcr-1.1) and 16 virulence genes including aerobactin. Moreover, a novel integrative and conjugative element, named ICEKpSL1, was identified in SCsl1, which contains a full Yersinia high-pathogenicity island (HPI). This element could be excised from the chromosome to form a circular intermediate, indicating potential transmission of the Yersinia pathogenicity island. The emergence of multidrug-resistance and hypervirulence in K. pneumoniae from animals warrants further surveillance.
Source: Veterinary Microbiology - Category: Veterinary Research Source Type: research