High bisphenol A concentrations augment the invasiveness of tumor cells through Snail-1/Cx43/ERR γ-dependent epithelial-mesenchymal transition.

High bisphenol A concentrations augment the invasiveness of tumor cells through Snail-1/Cx43/ERRγ-dependent epithelial-mesenchymal transition. Toxicol In Vitro. 2019 Oct 17;:104676 Authors: Ryszawy D, Pudełek M, Kochanowski P, Janik-Olchawa N, Bogusz J, Rąpała M, Koczurkiewicz P, Mikołajczyk J, Borek I, Kędracka-Krok S, Karnas E, Zuba-Surma E, Madeja Z, Czyż J Abstract Bisphenol A (BPA) is commonly present in plastics used for food storage and preservation. The release of BPA from these products results in a permanent human exposition to BPA; however, the quality and quantity of BPA adverse effects remain a matter of controversy. The common presence of BPA in the human environment and the controversies concerning the relations of human exposition to BPA and cancer incidence justify the research on the interactions between BPA and pro-metastatic signaling in cancer cells. Here, we describe a novel BPA-reactive signaling axis that induces the epithelial-mesenchymal transition (EMT) in lung adenocarcinoma A549 cells. BPA exerted negligible effects on their properties in a wide range of concentrations (10 nM - 100 nM), whereas it considerably induced A549 invasiveness at high concentrations (10 μM). The BPA-induced EMT was illustrated by morphologic changes, E/N-cadherin switch and vimentin/Snail-1/connexin(Cx)43 up-regulation in A549 populations. It was followed by enhancement of A549 drug-resistance. Corresponding effects...
Source: Toxicology in Vitro - Category: Toxicology Authors: Tags: Toxicol In Vitro Source Type: research