Metabolic control analysis of L-tryptophan production with Escherichia coli based on data from short-term perturbation experiments

Publication date: Available online 19 October 2019Source: Journal of BiotechnologyAuthor(s): Julia Tröndle, Kristin Schoppel, Arne Bleidt, Natalia Trachtmann, Georg A. Sprenger, Dirk Weuster-BotzAbstractE. coli strain NT1259 /pF112aroFBLkan was able to produce 14.3 g L-1 L-tryptophan within 68 h in a fed-batch process from glycerol on a 15 L scale. To gain detailed insight into metabolism of this E. coli strain in the fed-batch process, a sample of L-tryptophan producing cells was withdrawn after 47 h, was separated rapidly and then resuspended in four parallel stirred-tank bioreactors with fresh media. Four different carbon sources (glucose, glycerol, succinate, pyruvate) were supplied individually with varying feeding rates within 19 min and the metabolic reactions of the cells in the four parallel reactors were analyzed by quantification of extracellular and intracellular substrate, product and metabolite concentrations. Data analysis allowed the estimation of intracellular carbon fluxes and of thermodynamic limitations concerning intracellular concentrations and reaction energies. Carbon fluxes and intracellular metabolite concentrations enabled the estimation of elasticities and flux control coefficients by applying metabolic control analysis making use of a metabolic model considering 48 enzymatic reactions and 56 metabolites. As the flux control coefficients describe connections between enzyme activities and metabolic fluxes, they reveal genetic targets for ...
Source: Journal of Biotechnology - Category: Biotechnology Source Type: research