Selective loss of phosphoserine aminotransferase 1 (PSAT1) suppresses migration, invasion, and experimental metastasis in triple negative breast cancer

In this report, we investigate the role of PSAT1 in migration and invasion potential in a subset of TNBC cell types. We found that the expression of PSAT1 increases with TNBC clinical grade. We also demonstrate that suppression of PSAT1 or phosphoglycerate dehydrogenase (PHGDH) does not negatively impact cell proliferation in TNBC cells that are not dependent on de novo serine synthesis. However, we observed that suppression of PSAT1 specifically alters the F-actin cytoskeletal arrangement and morphology in these TNBC cell lines. In addition, suppression of PSAT1 inhibits motility and migration in these TNBC cell lines, which is not recapitulated upon loss of PHGDH. PSAT1 silencing also reduced the number of lung tumor nodules in a model of experimental metastasis; yet did not decrease anchorage-independent growth. Together, these results suggest that PSAT1 functions to drive migratory potential in promoting metastasis in select TNBC cells independent of its role in serine synthesis.
Source: Clinical and Experimental Metastasis - Category: Cancer & Oncology Source Type: research