GSE132684 A mouse mutation that dysregulates neighboring Galnt17 and Auts2 genes is associated with phenotypes related to the human AUTS2 syndrome

Contributor : Lisa StubbsSeries Type : Expression profiling by high throughput sequencingOrganism : Mus musculusAUTS2 was originally discovered as the gene disrupted by a translocation in human twins with Autism spectrum disorder (ASD), intellectual disability, and epilepsy. Since that initial finding, AUTS2-linked mutations and variants have been associated with a very broad array of neuropsychiatric disorders, suggesting that AUTS2 is required for fundamental steps of neurodevelopment. However, genotype-phenotype correlations in this region are complicated, because most mutations could also involve neighboring genes. Of particular interest in this regard is the nearest downstream neighbor of AUTS2, GALNT17, encoding a brain-expressed N-acetylgalactosaminyltransferase of unknown brain function. Here we describe a mouse (Mus musculus) mutation, T(5G2;8A1)GSO (abbreviated 16Gso), a reciprocal translocation that breaks between Auts2 and Galnt17 and dysregulates both genes. Despite this complex regulatory effect, 16Gso homozygotes model certain human AUTS2-linked phenotypes very well. In addition to abnormalities in growth, craniofacial structure, learning and memory, and behavior, 16Gso homozygotes display distinct pathologies of the cerebellum and hippocampus that are similar to those associated with ASD and other types of neurological disease associated with this genomic region. Analyzing the mutant cerebellar and hippocampal transcriptomes, we identified disturbances in ...
Source: GEO: Gene Expression Omnibus - Category: Genetics & Stem Cells Tags: Expression profiling by high throughput sequencing Mus musculus Source Type: research