Exogenous hydrogen sulfide protects against high glucose-induced apoptosis and oxidative stress by inhibiting the STAT3/HIF-1 α pathway in H9c2 cardiomyocytes.

Exogenous hydrogen sulfide protects against high glucose-induced apoptosis and oxidative stress by inhibiting the STAT3/HIF-1α pathway in H9c2 cardiomyocytes. Exp Ther Med. 2019 Nov;18(5):3948-3958 Authors: Li J, Yuan YQ, Zhang L, Zhang H, Zhang SW, Zhang Y, Xuan XX, Wang MJ, Zhang JY Abstract Hydrogen sulfide (H2S), an endogenous gasotransmitter, possesses multiple physiological and pharmacological properties including anti-apoptotic, anti-oxidative stress and cardiac protective activities in diabetic cardiomyopathy. An increasing body of evidence has suggested that signal transducer and activator of transcription 3 (STAT3) has beneficial effects in the heart. However, the effect of diabetes on the phosphorylation or activation of cardiac STAT3 appears to be controversial. The present study was designed to investigate the precise function of the STAT3/hypoxia-inducible factor-1α (HIF-1α) signaling pathway in high glucose (HG)-induced H9c2 cardiomyocyte injury and the function of the STAT3/HIF-1α pathway in the cardioprotective action of H2S. The results revealed that GYY4137 pretreatment substantially ameliorated the HG-induced decrease in cell viability and the increase in lactate dehydrogenase (LDH) release in H9c2 cells. Additionally, HG treatment resulted in the upregulation of the phosphorylated (p)-STAT3/STAT3 ratio and HIF-1α protein expression in H9c2 cells, indicating that the activation of the STAT3/HIF-1α pathway wa...
Source: Experimental and Therapeutic Medicine - Category: General Medicine Tags: Exp Ther Med Source Type: research