Detecting distant-homology protein structures by aligning deep neural-network based contact maps

In this study, we propose a new method, CEthreader, which first predicts residue-residue contacts by coupling evolutionary precision matrices with deep residual convolutional neural-networks. The predicted contact maps are then integrated with sequence profile alignments to recognize structural templates fr om the PDB. The method was tested on two independent benchmark sets consisting collectively of 1,153 non-homologous protein targets, where CEthreader detected 176% or 36% more correct templates with a TM-score>0.5 than the best state-of-the-art profile- or contact-based threading methods, respectively, for the Hard targets that lacked homologous templates. Moreover, CEthreader was able to identify 114% or 20% more correct templates with the same Fold as the query, after excluding structures from the same SCOPe Superfamily, than the best profile- or contact-based threading methods. Detailed analyses show that the major advantage of CEthreader lies in the efficient coupling of contact maps with profile alignments, which helps recognize global fold of protein structures when the homologous relationship between the query and template is weak. These results demonstrate an efficient new strategy to combineab initio contact map prediction with profile alignments to significantly improve the accuracy of template-based structure prediction, especially for distant-homology proteins.
Source: PLoS Computational Biology - Category: Biology Authors: Source Type: research
More News: Biology | Study