Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity

Publication date: December 2019Source: Journal of Catalysis, Volume 380Author(s): Xin Zeng, Zichun Wang, Jia Ding, Leizhi Wang, Yijiao Jiang, Catherine Stampfl, Michael Hunger, Jun HuangAbstractRenewable arenes and aromatic alcohols can be derived from lignocellulose by biorefineries, which has been considered as a sustainable alternative to replace petrochemical feedstocks in the synthesis of monobenzylation products, key industrial intermediates, via benzylation reactions. Zeolites with micropores are the most widely used catalysts in the benzylation of arenes, however, their performance suffers from diffusion limitations in converting large arenes. In this work, mesoporous and microporous H–Beta zeolites were prepared and applied in the systematic study of benzylation of arenes (benzene, toluene, p-xylene and mesitylene) with benzyl alcohol (BA). The porous structure of these zeolites has been confirmed by XRD, BET and TEM techniques. The catalytically active Brønsted acid sites (BAS) were determined by quantitative 1H magic-angle spinning (MAS) nuclear magnetic resonance (NMR) experiments. The benzylation studies have shown that introducing mesopores into H–Beta zeolites can significantly increase the diffusion/access of arenes to surface sites, particularly for bulky arenes (e.g. mesitylene), while micropores are mainly selective for the conversion of small arenes (e.g. benzene). Increasing the nucleophilicity of arenes with more alkyl groups can enhance their catal...
Source: Journal of Catalysis - Category: Chemistry Source Type: research
More News: Alcoholism | Chemistry | Study