Patient-Tailored, Connectivity-Based Forecasts of Spreading Brain Atrophy

Publication date: Available online 14 October 2019Source: NeuronAuthor(s): Jesse A. Brown, Jersey Deng, John Neuhaus, Isabel J. Sible, Ana C. Sias, Suzee E. Lee, John Kornak, Gabe A. Marx, Anna M. Karydas, Salvatore Spina, Lea T. Grinberg, Giovanni Coppola, Dan H. Geschwind, Joel H. Kramer, Maria Luisa Gorno-Tempini, Bruce L. Miller, Howard J. Rosen, William W. SeeleySummaryNeurodegenerative diseases appear to progress by spreading via brain connections. Here we evaluated this transneuronal degeneration hypothesis by attempting to predict future atrophy in a longitudinal cohort of patients with behavioral variant frontotemporal dementia (bvFTD) and semantic variant primary progressive aphasia (svPPA). We determined patient-specific “epicenters” at baseline, located each patient’s epicenters in the healthy functional connectome, and derived two region-wise graph theoretical metrics to predict future atrophy: (1) shortest path length to the epicenter and (2) nodal hazard, the cumulative atrophy of a region’s first-degree neighbors. Using these predictors and baseline atrophy, we could accurately predict longitudinal atrophy in most patients. The regions most vulnerable to subsequent atrophy were functionally connected to the epicenter and had intermediate levels of baseline atrophy. These findings provide novel, longitudinal evidence that neurodegeneration progresses along connectional pathways and, further developed, could lead to network-based clinical tools for progn...
Source: Neuron - Category: Neuroscience Source Type: research