Viruses, Vol. 11, Pages 933: A Bivalent Live-Attenuated Vaccine for the Prevention of Equine Influenza Virus

In this study, we used reverse genetics technologies to generate a bivalent EIV live-attenuated influenza vaccine (LAIV). We combined our previously described clade 1 EIV LAIV A/equine/Ohio/2003 H3N8 (Ohio/03 LAIV) with a newly generated clade 2 EIV LAIV that contains the six internal genes of Ohio/03 LAIV and the HA and NA of A/equine/Richmond/1/2007 H3N8 (Rich/07 LAIV). The safety profile, immunogenicity, and protection efficacy of this bivalent EIV LAIV was tested in the natural host, horses. Vaccination of horses with the bivalent EIV LAIV, following a prime-boost regimen, was safe and able to confer protection against challenge with clade 1 (A/equine/Kentucky/2014 H3N8) and clade 2 (A/equine/Richmond/2007) wild-type (WT) EIVs, as evidenced by a reduction of clinical signs, fever, and virus excretion. This is the first description of a bivalent LAIV for the prevention of EIV in horses that follows OIE recommendations. In addition, since our bivalent EIV LAIV is based on the use of reverse genetics approaches, our results demonstrate the feasibility of using the backbone of clade 1 Ohio/03 LAIV as a master donor virus (MDV) for the production and rapid update of LAIVs for the control and protection against other EIV strains of epidemiological relevance to horses.
Source: Viruses - Category: Virology Authors: Tags: Article Source Type: research

Related Links:

This study presents the first evidence that the transcriptional regulator VjbR has important function in B. canis. In addition, according to its reduced virulence and the protective immunity it induces in mice, it can be a potential live attenuated vaccine against B. canis.
Source: Microbial Pathogenesis - Category: Infectious Diseases Source Type: research
Abstract Clinical and historical data underscore the ability of influenza viruses to ally with Staphylococcus aureus and predispose the host for secondary bacterial pneumonia, which is a leading cause of influenza-associated mortality. This is fundamental because no vaccine for S. aureus is available and the number of antibiotic-resistant strains is alarmingly rising. Hence, this leaves influenza vaccination the only strategy to prevent postinfluenza staphylococcal infections. In the present work, we assessed the off-target effects of a Tnms42 insect cell-expressed BEI-treated Gag-VLP preparation expressing the HA...
Source: Vaccine - Category: Allergy & Immunology Authors: Tags: Vaccine Source Type: research
Influenza A virus infection is a global health threat to livestock and humans, causing substantial mortality and morbidity. As both pigs and humans are readily infected with influenza viruses of similar subtype, the pig is a robust and appropriate model for investigating swine and human disease. We evaluated the efficacy of the human cold-adapted 2017–2018 quadrivalent seasonal LAIV in pigs against H1N1pdm09 challenge. LAIV immunized animals showed significantly reduced viral load in nasal swabs. There was limited replication of the H1N1 component of the vaccine in the nose, a limited response to H1N1 in the lung lym...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
In conclusion, NPs-based vaccines can serve as novel candidate vaccines against several porcine viral infections with the potential to enhance the broader protective efficacy under field conditions. This review highlights the recent developments in NPs-based vaccines against porcine viral pathogens and how the NPs-based vaccine delivery system induces innate and adaptive immune responses resulting in varied level of protective efficacy.
Source: Veterinary Research - Category: Veterinary Research Source Type: research
This study reports virological and epidemiological data accumulated through passive surveillance conducted during 1,825 herd visits from 2011 to 2018. Among them, 887 (48.6%) tested swIAV-positive. The proportion of positive cases remained stable year-on-year and year-round. The European avian-like swine H1N1 (H1avN1) virus was the most frequently identified (69.6%), and was widespread across the country. The European human-like reassortant swine H1N2 (H1huN2) virus accounted for 22.1% and was only identified in the north-western quarter and recently in the far north. The 2009 pandemic H1N1 (H1N1pdm) virus (3.6%) was detec...
Source: Veterinary Microbiology - Category: Veterinary Research Source Type: research
In this study, we hypothesized that moderately and chronically reducing ACh could attenuate the deleterious effects of aging on NMJs and skeletal muscles. To test this hypothesis, we analyzed NMJs and muscle fibers from heterozygous transgenic mice with reduced expression of the vesicular ACh transporter (VAChT), VKDHet mice, which present with approximately 30% less synaptic ACh compared to control mice. Because ACh is constitutively decreased in VKDHet, we first analyzed developing NMJs and muscle fibers. We found no obvious morphological or molecular differences between NMJs and muscle fibers of VKDHet and contro...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
The objective of this study was to develop a first-generation vaccine which combines the safety and efficacy advantages of inactivated and attenuated vaccines respectively. The approach targeted fragmentation of viral nucleic acids while preserving structure. Hence, cultures of influenza A/CA/04/09 H1N1 were exposed to 44 °C for 10 min. to reversibly denature the capsid, followed by RNase treatment to digest the genomic RNA and then refolded at lower temperatures. As targeted, treated virions retained an intact structure and were not detected in the first passage in infected cells. To improve intra-nasal ...
Source: Veterinary Microbiology - Category: Veterinary Research Source Type: research
Publication date: December 2019Source: Research in Veterinary Science, Volume 127Author(s): Pia Ryt-Hansen, Inge Larsen, Charlotte Sonne Kristensen, Jesper Schak Krog, Lars Erik LarsenAbstractRecent studies have questioned the effect of maternal derived antibodies (MDAs) to protect piglets against infection with influenza A virus (IAV). The lack of protection against IAV infections provided by MDAs has encouraged alternative vaccination strategies targeting young piglets in an attempt to stimulate an early antibody response. There is a lack of studies documenting the efficacy of piglet vaccination. In the present study, we...
Source: Research in Veterinary Science - Category: Veterinary Research Source Type: research
Host Kevin Patton previews the newly revised HAPS Learning Outcomes for A&P, discussing the goals of the revision and samples a few of the changes. Why is noon a good time to get your flu shot? Are there neurons that actively erase memories? Vaping: why A&P teachers need to keep up with the news.00:42 | Timing of Vaccinations02:36 | Sponsored by HAPS03:04 | Neurons That Erase Memory08:22 | Sponsored by AAA08:47 | Vaping13:45 | Sponsored by HAPI Online Graduate Program14:28 | Revisiting the HAPS Learning Outcomes for A&P41:43 | Staying ConnectedIf you cannot see or activate the audio playerclick her...
Source: The A and P Professor - Category: Physiology Authors: Source Type: blogs
Authors: Lamichhane PP, Samarasinghe AE Abstract Influenza virus infection is a serious threat to humans and animals, with the potential to cause severe pneumonia and death. Annual vaccination strategies are a mainstay to prevent complications related to influenza. However, protection from the emerging subtypes of influenza A viruses (IAV) even in vaccinated individuals is challenging. Innate immune cells are the first cells to respond to IAV infection in the respiratory tract. Virus replication-induced production of cytokines from airway epithelium recruits innate immune cells to the site of infection. These leuko...
Source: Journal of Immunology Research - Category: Allergy & Immunology Tags: J Immunol Res Source Type: research
More News: Epidemiology | Genetics | Influenza | Influenza Vaccine | Study | Vaccines | Veterinary Vaccinations | Virology