Clinical implementation, logistics and workflow guide for MRI image based interstitial HDR brachytherapy for gynecological cancers.

We presented the physics preparations and clinical workflow required for implementing MRI-based HDR IBT (MRI-HDR-IBT) of gynecologic cancer patients in a high-volume brachytherapy center. The present document is designed to focus on the clinical steps required from a physicist's standpoint. Those steps include: (a) testing IBT equipment with MRI scanner, (b) preparation of templates and catheters, (c) preparation of MRI line markers, (d) acquisition, importation and registration of MRI images, (e) development of treatment plans and (f) treatment evaluation and documentation. The checklists of imaging acquisition, registration and plan development are also presented. Based on the TG-100 recommendations, a workflow chart, a fault tree analysis and an error-solution table listing the speculated errors and solutions of each step are provided. Our workflow and practice indicated the MRI-HDR-IBT is achievable in most radiation oncology clinics if the following equipment is available: MRI scanner, CT (computed tomography) scanner, MRI/CT compatible templates and applicators, MRI line markers, HDR afterloader and a brachytherapy treatment planning system capable of utilizing MRI images. The OR/procedure room availability and anesthesiology support are also important. The techniques and approaches adopted from the GEC-ESTRO (Groupe Européen de Curiethérapie - European Society for Therapeutic Radiology and Oncology) recommendations and other publications are proven to be feasible. Th...
Source: Journal of Applied Clinical Medical Physics - Category: Physics Authors: Tags: J Appl Clin Med Phys Source Type: research