Emerging mechanistic underpinnings and therapeutic targets for chemotherapy-related cognitive impairment

Purpose of review Modern innovations in cancer therapy have dramatically increased the number of cancer survivors. An unfortunately frequent side-effect of cancer treatment is enduring neurological impairment. Persistent deficits in attention, concentration, memory, and speed of information processing afflict a substantial fraction of cancer survivors following completion of these life-saving therapies. Here, we highlight chemotherapy-related cognitive impairment (CRCI) and discuss the current understanding of mechanisms underlying CRCI. Recent findings New studies emphasize the deleterious impact of chemotherapeutic agents on glial–glial and neuron–glial interactions that shape the form, function and plasticity of the central nervous system. An emerging theme in cancer therapy-related cognitive impairment is therapy-induced microglial activation and consequent dysfunction of both neural precursor cells and mature neural cell types. Recent work has highlighted the complexity of dysregulated intercellular interactions involving oligodendrocyte lineage cells, microglia, astrocytes, and neurons following exposure to traditional cancer therapies such as methotrexate. This new understanding of the mechanistic underpinnings of CRCI has elucidated potential therapeutic interventions, including colony-stimulating factor 1 receptor inhibition, TrkB agonism, and aerobic exercise. Summary Traditional cancer therapies induce lasting alterations to multiple neural cell types. ...
Source: Current Opinion in Oncology - Category: Cancer & Oncology Tags: BRAIN AND NERVOUS SYSTEM: Edited by Marc Sanson Source Type: research